🚀
Energy Web X Ecosystem
  • Documentation Overview
  • Core Concepts
    • Energy Web Chain
    • Energy Web X
    • Energy Web Tokens
      • Token Lifting
      • Token Lowering
    • Worker Nodes and Worker Node Networks
      • Server-based Worker Node
      • Marketplace App (desktop-based)
    • Worker Node Operator
    • Smart Flows and Groups
    • Subscription
    • Reward Period
    • Voting and Consensus
    • Ethereum
      • Transactions and Transaction Costs
    • Decentralized Identifiers (DIDs)
  • EWC ECOSYSTEM
    • Energy Web Chain
      • System Architecture
        • Proof-of-Authority Consensus Mechanism
        • System Contracts
          • Name registry
          • Holding Contract
          • Block Reward Contract
          • Validator-Set Contract
        • Validator Node Architecture
      • Energy Web Block Explorer
      • Energy Web Chain Governance & Validators
    • Energy Web Tokens
  • EWX ECOSYSTEM
    • Energy Web X
    • EWX: Architecture
    • Pallets
      • Worker Node Pallet
      • Balances Pallet
      • Proxy Pallet
      • XCM Pallet
      • Assets Pallet
      • Multisig Pallet
      • Scheduler Pallet
      • Preimages Pallet
      • Offences Pallet
      • Eth-Bridge Pallet
      • Token-Manager Pallet
      • Ethereum-events pallet
      • Avn Pallet
    • Worker Nodes
      • 🖥️The Marketplace App
        • Operator and Worker Accounts
          • Creating an operator account
          • Funding an operator account
          • Connecting to operator account
          • Disconnecting an operator account
          • Creating a worker account
          • Importing worker account
          • Exporting worker account
          • Linking a worker account to an operator account
          • Unlinking a worker account from an operator account
        • How to use Ledger on Marketplace App
        • Token Management
          • Creating an EWC account
          • Managing EWC accounts
          • Lifting tokens
          • Lowering tokens
          • Tracking lifting and lowering transactions
          • Checking EWT balance
        • Subscriptions
          • Subscribing to a solution group
          • Topping-up subscription amount
          • Managing subscriptions
          • Unsubscribing from a solution group
          • Unsubscribing delay
        • Worker Node and Rewards
          • Configuring remote worker node
          • Switching worker node location to remote
          • Participating into worker node network
          • Votes casted per Period
          • Reward Period
          • Checking rewards
          • Claiming rewards
        • FAQ: Marketplace App
        • Location Services
      • 🗄️Server-based Worker Nodes
        • Deployment Guide
        • Bootstrapping Server-based Worker Node Accounts
        • FAQ: Server-based Worker Nodes
      • Worker Node use cases
        • Sample Enterprise Use-Cases
          • Operating Envelopes Partitioning
          • ZEL Request Partitioning
          • Green Proofs
            • SAFc
            • Green Proofs for Bitcoin (GP4BTC)
            • Green Proofs as a Service (GPSaaS)
            • Green Proofs for Electrical Vehicles (GP4EV)
  • ENERGY SOLUTIONS
    • Green Proofs by Energy Web
      • Green Proofs Overview
      • Green Proofs Architecure
      • Green Proofs Software Stack
      • Use Cases and Reference Implementations
        • 24x7 Renewable Electricity
        • Sustainable Aviation Fuel
        • Green Proofs for Bitcoin
          • GP4BTC Miner Guide
        • Decarbonizing Shipping
        • Green Proofs for Electrical Vehicles
        • Green Proofs as a Service (GPSaaS)
    • Digital Spine by Energy Web
      • Design and Architecture
      • Component Guides
        • Energy Web Name Service (ENS)
        • Self-Sovereign Identities
          • SSI-Hub
          • Technical Guide
            • Organizations
            • Applications
            • Roles and IAM
          • Deployment Guide
            • Deploy Identity Cache Server
            • Deploy Switchboard
        • DDHub Message Broker
          • Technical Guide
            • Authentication and Authorization
            • Topics
            • Messaging
          • Deployment Guide
            • Deploy DID Auth Proxy
            • Deploy Message Broker
        • DDHub Client Gateway
          • Technical Guide
            • Authentication and Authorization
              • Key Vault
            • Client Gateway Identity and VCs
            • Address Book
            • Topics
            • Channels
            • Integration Options
            • Messaging
          • Deployment Guide
            • Launchpad SaaS
            • Azure Marketplace
            • Self-Hosted
              • Deploy with Kubernetes
              • Deploy with Docker
            • Key Vault
              • Deploy with HashiCorp Key Vault
              • Deploy with Azure Key Vault
              • Deploy with AWS Secrets Manager
            • Rebranding and Whitelabelling
Powered by GitBook
On this page
  1. EWX ECOSYSTEM

EWX: Architecture

PreviousEnergy Web XNextPallets

Last updated 2 months ago

Each set of worker nodes deployed by Energy Web, Energy Web customers of any energy enterprise is governed and anchored to unique pallets on Energy Web X(in traditional Web 3 language a pallet on a substrate-based blockchain is similar to a smart contract on an EVM but more powerful and flexible). Whit this architecture in place, Energy Web has. scalable way to launch worker nodes.

In the context of Energy Web X (EWX) and Substrate, a pallet is a modular, reusable component that defines specific blockchain functionality. Pallets are a foundational concept in Substrate, the framework on which EWX is built. They are similar to smart contracts in Ethereum-based systems but are more powerful and flexible due to their deep integration with the blockchain’s runtime. Each pallet is essentially a code module written in Rust that encapsulates logic for particular features such as token transfers, governance, staking, or custom business logic. In EWX, pallets are used to govern and anchor the behavior of worker nodes, manage rewards, enforce rules for participation, and ensure secure, transparent computation results. By leveraging pallets, EWX provides a highly customizable and efficient environment where enterprises can deploy solutions tailored to their unique needs, with strong on-chain governance and interoperability. These pallets form the building blocks of the blockchain runtime, enabling a scalable and robust ecosystem for Energy Web’s use cases.

Energy Web X’s purpose is to introduce new technical capabilities, leverage and complement the existing Energy Web Chain. To maximize the security of every Energy Web solution using worker nodes, EWT wis required to interact with worker nodes and Energy Web X that can be “lifted” from EWC to EWX and “lowered” back to EWC from EWX.

Worker Nodes are sofware packages that need to be run by individuals and/or businesses. In order to attract entities to run worker nodes, enterprises need to include rewards that pay worker node operator for performing their work. All worker node rewards are paid out in EWT.

Worker Nodes are sofware packages that need to be run by individuals and/or businesses. In order to attract entities to run worker nodes, enterprises need to include rewards that pay worker node operator for performing their work. All worker node rewards are paid out in EWT.

In order to become a trusted part and run worker nodes, individuals and/or businesses require to lock EWT. Enterprises launching worker node networks can configure different thresholds and award schedules at their discretion.

In Energy Web X, solutions represent business applications or use cases that are implemented through worker node networks. These solutions can be grouped into solution groups, which define shared governance parameters, reward structures, and operational criteria. Solution groups are crucial for aligning the behavior of worker nodes across similar or related solutions.

The lifetime of a solution group is configurable, allowing enterprises to set specific timeframes during which worker nodes can participate and earn rewards. Solution groups also allow flexibility: their lifetimes can be extended to accommodate ongoing or evolving business needs, and their reward structures can be raised to incentivize higher performance or attract more participants. This dynamic lifetime and reward management ensure that worker nodes are continually aligned with the goals of the enterprises that rely on them.

Solutions and solution groups establish the configuration that governs how worker node submissions are evaluated and consensus is reached on-chain. This configuration includes eligibility requirements, service-level expectations, and thresholds for agreeing on the correctness of off-chain computed results. By leveraging these configurable parameters, Energy Web X ensures a robust and secure consensus mechanism that validates and anchors the outputs of decentralized off-chain computations. This process is critical to maintaining trust and accuracy across all solutions powered by worker nodes.

EnergyWebX SmartFlow: The First Truly Decentralized SLA

SLAs today rely on trust, manual verification, and centralized enforcement—leading to disputes, inefficiencies, and unnecessary costs. Worse, they ignore sustainability. EnergyWebX SmartFlow is the first truly Decentralized SLA. Enterprises can now automate, enforce, and verify SLAs in a way that is trustless, transparent, and climate-conscious:

  • Set performance, uptime, and honesty thresholds—enforced on-chain

  • Unlock payments ONLY when SLAs are met

  • Eliminate disputes—SLA compliance recorded & validated on-chain

  • Define a Carbon SLA—setting a maximum carbon footprint for ESG reporting

With EnergyWebX SmartFlow there is no middlemen, no disputes, no unverifiable claims. Just real-time, automated, and verifiably green SLAs.

Enterprises are already integrating SmartFlow worker nodes into their solutions. .

Learn more about EWX related pallets
See real-world use cases